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Depinning transition at the upper critical dimension
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We study the effect of quenched random field disorder on a driven elastic interface close to the depinning
transition at the upper critical dimensiondc54 using the functional renormalization group. We have found that
the displacement correlation function behaves with distancex as (lnxL0)

2/3 for large x. Slightly above the
depinning transition the force-velocity characteristics are described by the equationv; f u ln fu2/9, while the
correlation length behaves asLv; f 21/2u ln fu1/6, where f 5F/Fc21 is the reduced driving force.
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The driven viscous motion of an elastic interface in
medium with randomly distributed pinning disorder has
tracted considerable theoretical interest during the last
cade and is in a state of rapid development. The reaso
that, on one hand elastic interfaces in a disordered med
exhibit the rich behavior of glassy systems and on the o
hand it can serve as a model for many experimental syste
such as domain walls in magnetically or structurally orde
systems with impurities and interfaces between immisc
fluids in porous media. Other closely related problems
the motion of a vortex line in an impure superconductor a
the motion of a dislocation line in a solid@1–7#. In all these
systems the basic physical ingredients are identical: the e
tic forces tend to keep the interface flat, whereas the diso
locally promotes the wandering. In the dynamics, this int
play between quenched disorder and elasticity leads to
complicated response of the interface to an externally
plied force. At zero temperature, a driving forceF exceeding
certain threshold valueFc is required to set the elastic inte
face in steady motion. The depinning transition can be c
sidered as a nonequilibrium dynamical critical phenomen
@1# where a system becomes extremely sensitive to sm
perturbation. Recently, significant progress has been mad
understanding the depinning transition@4,5# ~for recent stud-
ies see Refs.@6–8#!. It has been shown that the function
renormalization group~FRG! gives an adequate descriptio
of the critical behavior at the depinning transition if on
presumes to consider a singular renormalized random f
correlator. The scaling analysis shows that the disorder
fects dominate over elasticity in dimensionsd,4, and there-
fore dc54 is the upper critical dimension of the problem
Below dc the interface undergoes the depinning transition
a critical driving forceFc and slightly above the critica
force Fc the average velocity of the interface behaves as

v;~F2Fc!
u, F.Fc , ~1!

where u is the critical exponent. The roughness expon
characterizing the widthw of the wandering interface at th
depinning transition is defined by

w;Lz, ~2!

whereL is the linear size of the interface. The FRG analy
carried out in Ref.@4# enabled one to compute the critic
force Fc , and the critical exponentsu and z to order«54
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2d. In the case of random force disorder it was found th
u512«/91O(«2) and z5«/3 @4,5#. It was suggested in
Ref. @5# that at the depinning transition the critical exponen
for random bond and random field~RF! disorder are the
same. Initially, the result for the roughness exponent w
expected to be exact for alld51,2,3 @5#, but more recently,
the nonzero two-loop correction toz has been found@7#.

The results of FRG analysis have been checked by in
sive numerical studies using both direct simulation@9–12#
and different cellular automata models@13–15#, which are
believed to belong to the same universality class. The co
puted values of critical exponents are in a good agreem
with the predictions of FRG, at least ford51,2,3. In the
numerical works@12,16# the depinning transition was studie
at the upper critical dimension. However, to our knowledg
no explicit consideration of the depinning transition at t
upper critical dimensiondc54 is available so far. Anothe
motivation to consider the depinning transition at the up
critical dimension is that some experimental elastic syste
for example, systems with dispersive elastic constant suc
moving geological faults arising from earthquakes@1#, or
systems with long-range Coulomb interaction, have the
per critical dimensiondc53 or 2. One expects that thes
systems may show a behavior similar to the behavior o
simple model atdc54 @17#.

It is well known @18# that at the upper critical dimensio
the power laws modify to logarithmic corrections. While
the upper critical dimension the one-loop RG consists
summing the main logarithms, the two-loop RG takes in
account the subdominant logarithms@19#. Due to the fact
that close to the depinning transition the main logarithms
leading, the results of the one-loop RG treatment are
pected to be exact at the upper critical dimension forF
→Fc .

In this Brief Report we consider the motion of an elas
interface in a disordered medium and our main purpose i
describe the critical dynamics near depinning threshold
d5dc by using FRG method to one-loop order. The moti
of a d-dimensional interface obeys the equation

l
]z~x,t !

]t
5g¹2z1F1g~x,z!, ~3!

wherel is the friction coefficient~or the inverse mobility!, g
is the stiffness constant, andF is the driving force density.
©2003 The American Physical Society04-1
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The quenched random forceg(x,z) is assumed to be Gaus
ian distributed with the zero mean and the correlator

^g~x,z!g~x8,z8!&5d (d)~x2x8!D~z2z8!. ~4!

To make this model well defined, one has to introduce
cutoff L0

21 in the dd(x) function at scales of order of th
impurity separation or other microscopic scales. We rest
our consideration to the case of random field disorder w
the correlatorD(z)5D(2z) is a monotonically decreasin
function ofz for z.0 and decays rapidly to zero over a fini
distance.

In Ref. @4# the RG analysis of model~3!, ~4! was carried
out using the technique of path integrals in the one-lo
approximation. After integrating out fluctuations in the m
mentum shellL l,uku,L0, the following RG flow equations
have been obtained

d ln l

dl
52

Kd

g2L l
«E0

`

dt te2tD9~ ṽt !, ~5!

dF

dl
5

Kd

gL l
22dE0

`

dte2tD8~ ṽt !, ~6!

where v is the average velocity of the interface,L l

5L0e2 l , ṽ5lv/(gL l
2), and Kd

2152d21pd/2G(d/2). Due
to the tilt symmetry the stiffness constantg does not renor-
malize. In the limitṽ→0 the disorder correlatorD(z) renor-
malizes as

dD~z!

dl
52

Kd

g2L l
«

d2

dz2 F1

2
D2~z!2D~z!D~0!G . ~7!

RG equations~5! and~7! are the basis for computation of th
force-velocity characteristics in the vicinity of the depinnin
transition. In the following we analyze Eqs.~5! and ~7! at
d54, i.e., for«50. Before considering the general solutio
of the RG equations, we will analyze the flow equation
D9(0),

dD9~0!

dl
52

3K4

g2
@D9~0!#2. ~8!

From Eq.~8! it follows that as in the cased,dc , the second
derivative of the disorder correlator at originD9(0) diverges
at the finite lengthl c52g2/@3K4D09(0)# for any initial con-
dition D09(0),0. Thus one obtains the Larkin lengthLc

5L0
21el c at the upper critical dimension. The divergence

the curvature ofD(z) implies the generation of a cusp sin
gularity: D(z) becomes nonanalytical at the origin and a
quires for l . l c a nonzero derivativeD8(01),0. It was
shown in Ref.@4# that the cusp generated during the ren
malization determines the threshold force of the depinn
transition. Therefore we expect that even at the upper crit
dimension the interface is pinned for a small enough driv
force.
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We will now consider the depinning transition at the u
per critical dimension. Although Eq.~8! does not have a
sense beyond the Larkin scale, nevertheless, we can stil
flow equation~7! for the renormalized correlator. In contra
to d,dc , where the critical behavior at the depinning tra
sition is obtained from the fixed-point solution of Eq.~7!
corresponding to the conditiondD* (z)/dl50, the solution
of Eq. ~7! describing the behavior at the depinning transiti
at the upper critical dimension depends explicitly onl. To
find the scaling form of the functionD l(z) at d54 we look
for an automodel solution of Eq.~7! in the form D l(z)
5K4

21g2f( l )r„c( l )z…. Note that the latter reflects the sca
ing behavior at the depinning transition. Substituting th
scaling ansatz into Eq.~7!, we obtain the simultaneous equ
tions for f( l ), c( l ), andr(z):

f8~ l !52f2~ l !c2~ l !, c8~ l !52f~ l !c3~ l !, ~9!

@zr~z!#85@r2~z!/22r~z!r~0!#9. ~10!

Equations~9! imply thatc( l )/f( l )5a is a constant that will
be determined below. This condition allows us to findf( l )
5(3a2l )21/3 and c( l )5(3l /a)21/3, so that the automode
solution of Eq.~7! results in

D l~z!5K4
21g2~3a2l !21/3r„z~3l /a!21/3)…. ~11!

Equation~11! is the pendant of the fixed-point solution of th
disorder correlator atd,4. One should bear in mind that th
FRG equation in this case (d5dc) gives the exact large-scal
behavior, while ford,dc one must rely on the« expansion.
The solution of Eq.~10! with the initial conditionr(0)51,
which formally coincides with the equation for the fixed
point disorder correlator ate53 @1#, can be written as

r~z!212 ln r~z!5z2/2. ~12!

Note thatr(z) has a cusp at origin so that its behavior ne
z50 is given byr(z)512uzu1 1

3 z21•••. The constanta
must be defined from the initial condition for the disord
correlator. Indeed, flow equation~7! for the disorder cor-
relator implies that in the case of RF disorder the RF stren
c5*2`

1`D ldz is conserved to one-loop order@4# ~it was
shown in Refs.@7,8# that the above integral is not conserve
in the two-loop order FRG!, i.e., it does not depend onl.
Therefore the constanta in ansatz~11! is determined by the
strength c of the bare disorder correlator asa
'1.55K4

21g2c21, where we have used the integr
*2`

1`r(z)dz'1.55. To higher orders of FRG, the nonunive
sal constanta is determined by higher moments of the ba
disorder correlator. For the bare disorder correlator bein
smooth function, the RG flow generates as in the casd
,dc singularities on the scalel c , which result in the cusp of
the running disorder correlator, and therefore in the existe
of the threshold forceFc.0. Because automodel solutio
~11! has the cusp on all scales, one should use it only bey
the Larkin scale. The full solution of flow equation~7!, of
course, depends on the initial condition, nevertheless,
latter is expected to approach solution~11! in the limit l
4-2
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→`. From Eq.~11! one can immediately derive the scalin
relations for the first derivatives of the running disorder c
relator,

D l~0!5K4
21g2~3a2l !21/3, ~13!

D l8~01!52K4
21g2~9al2!21/3, ~14!

D l9~0!52K4
21g2~9l !21. ~15!

Using the above results, we will now calculate the d
placement correlation functionB(q)5^zqz2q& that describes
the roughness of the interface at the upper critical dimens
Simple scaling analysis shows that the correlation funct
satisfies the following flow equation@17#:

B~q!5e4lB~qel ;D l ,Fl !. ~16!

In order to extract the behavior for long-wavelength corre
tions at the depinning transition,F5Fc , we put qel5L0
and expand Eq.~16! in powers ofD. After some algebra this
yields

B~q!5
D l~0!

g2q4
5

8p2

~3a2!1/3

1

q4@ ln L0 /q#1/3
, ~17!

where in order to obtain the final expression on the rig
hand side of Eq.~17! we have used Eq.~13!. In a direct
analogy with the cased,4, Eq.~17! holds simultaneously in
the equilibrium and at the depinning threshold at least wit
the one-loop approximation@5,7#. The Fourier transform of
Eq. ~17! results in the following real-space displacement c
relation function for large distancex:

B~x!;~ ln xL0!2/3. ~18!

To obtain the force-velocity characteristics we have
integrate the flow equations in the vicinity ofFc , i.e., in the
limit of small ṽ. Substituting Eq.~15! into flow equation~5!
for the friction coefficient and Eq.~14! into the flow equation
for driving force ~6!, we obtain

d ln l l

dl
52

2

9l
, ~19!

dFl

dl
52

gL0
2

~9a!1/3
l 22/3e22l . ~20!

Equations~19! and ~20! describe the renormalization ofl l
andFl to one-loop order beyond the Larkin scale at the u
per critical dimension. In contrast to Eqs.~19! and ~20! be-
low the Larkin scale the friction coefficientl l increases un-
der renormalization in accordance with Eq.~5!, while the
driving force is essentially not renormalized (dFl /dl.0).
Integration of Eqs.~19! and ~20! over l starting from l c
yields the following scaling relations for the friction coeffi
cient and the driving force:

l l5l0~ l / l c!
22/9, ~21!
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Fl2F52Fc.20.2L0
2~gc!1/3, ~22!

wherel0 is the friction coefficient on the scalel c . In order
to obtain the renormalized friction coefficient one should e
pressl in Eq. ~21! through the correlation lengthLv accord-
ing to Lv5L0

21el v. In d,dc dimensions the relation be
tween Lv and v reads, Lv;v21/(z2z), where z522(«
2z)/3 is the dynamic exponent relating the time and t
length scale@4,5#. Let us now derive the relation betweenLv
andv at the upper critical dimension. To do this we need fi
the relation between the time scale and the space sc
which is derived by using the relationt;l lL

2/g with l l
given by Eq.~21! ast;L2(ln L)22/9. Following Ref.@4#, the
correlation lengthLv can be derived by equating the system
atic drift of the interface and the height fluctuation~or
equivalently from the velocity-velocity correlation functio
at equal times@6#!, which is the square root of Eq.~18!, vt
;(ln L)1/3. Combining the latter with the above relation b
tweent andL gives the correlation length at the upper critic
dimension as

Lv;v21/2u ln vu5/18. ~23!

The use of the relation,Fl v
5vl l v

, which is obtained by

stopping the renormalization atl v , whereFl v
is given by Eq.

~22!, l l v
is given by Eq. ~21! with l v5 ln LvL0, and Lv

;v21/2 @the logarithmic correction toLv in Eq. ~23! results
in higher order terms in the force-velocity characteristic#
gives the implicit form of the force-velocity characteristics
the vicinity of the depinning transition at the upper critic
dimension as

F2Fc;
v

u ln vu2/9
. ~24!

Within the one-loop consideration the interface velocityv
under the logarithm of Eq.~24! can be replaced byF2Fc .
Substitutingv from Eq. ~24! into Eq. ~23! we express the
correlation length as a function of the driving force asLv
; f 21/2u ln fu1/6, where the reduced driving forcef 5F/Fc
21 is introduced.

We have checked that results~13!–~15!, and~21! derived
here ford54 are consistent with the corresponding results
Ref. @4# for d,4, so that Eqs.~1! and ~2! tend to Eqs.~24!
and ~18! for d→4, respectively.

In the recent numerical study of the depinning transiti
of driven interfaces at the upper critical dimension in t
random-field Ising model~RFIM! @20# the logarithmic cor-
rections to the force-velocity characteristics were chosen
the form

@v~ f !/ f #1/f;u ln f u. ~25!

The best fit to numerical data was obtained withf50.40
60.09. Taking into account that the numerical determinat
of the logarithmic corrections is difficult, this value is in
fair agreement with our exact resultf52/9. The reason of
the discrepancy might be due to the fact that simulations
4-3
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not carried out in the asymptotic regime, lnf!21. Indeed,
the simulations in Ref.@20# were performed foru ln fu
51–4.5.

In the remaining part of this paper we will discuss t
contributions of the subdominant logarithms, which app
in the two-loop order of RG. Using the results of Ref.@8# we
find that the two-loop correction to disorder correlator~11! at
d54 has the form

D2l~z!5K4
21g2~9al2!22/3r2„z~3l /a!21/3

…, ~26!

wherer2(z) obeys the following differential equation:

$@12r~z!#@r2~z!2r2~0!#11/2$@r~z!21#r82 ~z!1r~z!%%9

1zr28~z!14r2~z!50 ~27!

with r(z) given by Eq.~12!. Following Ref.@8#, we impose
the boundary conditionr2(0)50 @r2(z) is the counterpart
of the functiony2(u) of Ref. @8#, so that this condition is
required for the consistency of the results for bothd,4 and
d54]. Expandingr2(z) in a Taylor series we obtainr2(z)
52uzu119/18z21•••. The leading correction to Eq.~17!
has the form2D l8(0

1)2/(gq)4*k1/k2(k1q)2 @8#, so that the
logarithmic correction to roughness~18! behaves as
(ln xL0)

21/3 and, therefore, is irrelevant for largex. In order
to take into account the two-loop corrections to forc
velocity characteristics we need the two-loop correction
friction, which reads@8#

K4
2/g4$D9~01!21D-~01!D8~01!@3/22 ln 2#%. ~28!

Substituting Eq.~26! into Eq. ~5! and Eq.~11! into Eq. ~28!
we obtain the two-loop contribution to Eq.~19! as C/ l 2,
whereC52@17/21 ln 2#/54'20.17. The two-loop correc
tion to driving force~6! results only in a shift of the thresh
ng

,

.
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old force Fc , which is a nonuniversal quantity, so that w
will not consider it. Using the same arguments that led us
Eqs.~23! and ~24!, we arrive at

f ; l v
1/3exp~22l v!, v~ f !/ f ; l v

2/9~11C/ l v!. ~29!

Equations~29! express the force-velocity characteristics
two-loop order of FRG by using the parametric represen
tion in terms of the correlation lengthl v5 ln LvL0. The latter
allows us to avoid the asymptotic expansion, which leads
a complicated expression@18#.

In order to describe the crossover to the asymptotic
havior given by Eq.~24!, one needs in addition to Eq.~29!
the corrections to scaling. The latter are not available, si
so far only the asymptotic solution of flow equations~5!–~7!
is known. Due to these reasons the extension of the des
tion of the critical behavior at the depinning transition
largerv is a nontrivial problem.

In conclusion, we have considered the effects of quenc
random field disorder on the driven elastic interface at
upper critical dimension close to the depinning transition.
have shown that the interface undergoes the depinning t
sition at the critical driving forceFc , and we have obtained
the logarithmic corrections to the displacement correlat
function, the correlation length, and the force-velocity ch
acteristics. In approaching the depinning transition, our o
loop results become exact. We hope that the analytical res
derived here will be of interest for numerical studies of t
depinning transition.

After this paper was finished, we learned that the m
precise estimation off from the simulations of RFIM@21# is
in a very good agreement with our prediction 2/9.
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