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Depinning transition at the upper critical dimension
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We study the effect of quenched random field disorder on a driven elastic interface close to the depinning
transition at the upper critical dimensidg=4 using the functional renormalization group. We have found that
the displacement correlation function behaves with distanas (InxAg)?® for large x. Slightly above the
depinning transition the force-velocity characteristics are described by the equatiblin f|*°, while the
correlation length behaves as~f~Y?In f|6, wheref=F/F.—1 is the reduced driving force.
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The driven viscous motion of an elastic interface in a—d. In the case of random force disorder it was found that
medium with randomly distributed pinning disorder has at-6=1—¢/9+0(e?) and {=¢/3 [4,5]. It was suggested in
tracted considerable theoretical interest during the last deRef.[5] that at the depinning transition the critical exponents
cade and is in a state of rapid development. The reason for random bond and random fieldRF) disorder are the
that, on one hand elastic interfaces in a disordered mediusame. Initially, the result for the roughness exponent was
exhibit the rich behavior of glassy systems and on the othegxpected to be exact for all=1,2,3[5], but more recently,
hand it can serve as a model for many experimental systemthe nonzero two-loop correction thhas been founfi7].
such as domain walls in magnetically or structurally ordered The results of FRG analysis have been checked by inten-
systems with impurities and interfaces between immisciblesive numerical studies using both direct simulat|@s-12|
fluids in porous media. Other closely related problems areand different cellular automata modédis3—15, which are
the motion of a vortex line in an impure superconductor ancbelieved to belong to the same universality class. The com-
the motion of a dislocation line in a sol[d—7]. In all these  puted values of critical exponents are in a good agreement
systems the basic physical ingredients are identical: the elagrith the predictions of FRG, at least far=1,2,3. In the
tic forces tend to keep the interface flat, whereas the disordetumerical workg12,16 the depinning transition was studied
locally promotes the wandering. In the dynamics, this inter-at the upper critical dimension. However, to our knowledge,
play between quenched disorder and elasticity leads to theo explicit consideration of the depinning transition at the
complicated response of the interface to an externally apapper critical dimensiond.=4 is available so far. Another
plied force. At zero temperature, a driving forléexceeding  motivation to consider the depinning transition at the upper
certain threshold valug . is required to set the elastic inter- critical dimension is that some experimental elastic systems,
face in steady motion. The depinning transition can be confor example, systems with dispersive elastic constant such as
sidered as a nonequilibrium dynamical critical phenomenomoving geological faults arising from earthquakdg, or
[1] where a system becomes extremely sensitive to smaflystems with long-range Coulomb interaction, have the up-
perturbation. Recently, significant progress has been made fser critical dimensiond.=3 or 2. One expects that these
understanding the depinning transitigh5] (for recent stud-  systems may show a behavior similar to the behavior of a
ies see Refs6—-8]). It has been shown that the functional simple model atl,.=4 [17].
renormalization grougFRG) gives an adequate description |t is well known[18] that at the upper critical dimension
of the critical behavior at the depinning transition if one the power laws modify to logarithmic corrections. While at
presumes to consider a singular renormalized random forcgie upper critical dimension the one-loop RG consists in
correlator. The scaling analysis shows that the disorder elsumming the main logarithms, the two-loop RG takes into
fects dominate over elasticity in dimensiahs 4, and there- account the subdominant logarithris9]. Due to the fact
fore dc=4 is the upper critical dimension of the problem. that close to the depinning transition the main logarithms are
Below d, the interface undergoes the depinning transition ateading, the results of the one-loop RG treatment are ex-
a critical driving forceF, and slightly above the critical pected to be exact at the upper critical dimension For
force F. the average velocity of the interface behaves as —F,.

) In this Brief Report we consider the motion of an elastic
v~(F=F¢)%  F>F, D interface in a disordered medium and our main purpose is to
f:iescribe the critical dynamics near depinning threshold for
d=d. by using FRG method to one-loop order. The motion
of a d-dimensional interface obeys the equation

where 6 is the critical exponent. The roughness exponen
characterizing the widtlv of the wandering interface at the
depinning transition is defined by

dz(x,t
w~L, 2 A ((9,[ ) _ yV2z+F+g(x,2), 3
wherelL is the linear size of the interface. The FRG analysis
carried out in Ref[4] enabled one to compute the critical where\ is the friction coefficienfor the inverse mobility, y

force F., and the critical exponent® and to orderes=4 s the stiffness constant, arklis the driving force density.
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The quenched random forcgx,z) is assumed to be Gauss-  We will now consider the depinning transition at the up-

ian distributed with the zero mean and the correlator per critical dimension. Although Eq8) does not have a
sense beyond the Larkin scale, nevertheless, we can still use
(9(x,2)g(x",2"))= 6D (x—x")A(z—2"). (4)  flow equation(7) for the renormalized correlator. In contrast

to d<d., where the critical behavior at the depinning tran-

To make this model well defined, one has to introduce thesition is obtained from the fixed-point solution of E(})
cutoff Ag* in the 8%x) function at scales of order of the corresponding to the conditiogiA* (z)/dI=0, the solution
impurity separation or other microscopic scales. We restricbf Eq. (7) describing the behavior at the depinning transition
our consideration to the case of random field disorder whemt the upper critical dimension depends explicitly lonTo
the correlatorA(z)=A(—z) is a monotonically decreasing find the scaling form of the functioA(z) atd=4 we look
function ofz for z>0 and decays rapidly to zero over a finite for an automodel solution of Eq7) in the form A(2)
distance. =K, 'v2¢(1)p(4(1)2). Note that the latter reflects the scal-

In Ref.[4] the RG analysis of modéB), (4) was carried ing behavior at the depinning transition. Substituting this
out using the technique of path integrals in the one-loopscaling ansatz into E¢7), we obtain the simultaneous equa-
approximation. After integrating out fluctuations in the mo- tions for ¢(1), (1), andp(2):
mentum shell\ ;< |k| <A, the following RG flow equations

have been obtained ¢’ (== (WA, ¥ (== (1), (9
* _ "=[p%(z)I2— 0)]". 10

d:jnlxz_ fdf dtte A" G, 5 [zp(2)]"=[p*(2)I12— p(2)p(0)] (10

YAy Jo Equationg9) imply that ¢(1)/ ¢(l)=a is a constant that will

be determined below. This condition allows us to find)
dF  Kg (=, ., ~ =(3a%) Y2 and y(1)=(3l/a) "3 so that the automodel
dl ),A|2—dJ'O dte™"A"(vt), ©) solution of Eq.(7) results in

_w-1.2 21\—1/3 -1/
where v is the average velocity of the interface\, A(2) =Ky v4(3a%1) " p(z(3l/a) 1)), 1D
N 2 —1_5d-1_df2
_Aﬁ’e 'I, U_M/(VA'h)’ a.r]:fd Kq =2 Trtd T'(d/2). Due Equation(11) is the pendant of the fixed-point solution of the
0 t.e ult symmet_rX the st ngss constaptdoes not renor- i der correlator al<4. One should bear in mind that the
malize. In the limitv —0 the disorder correlatak(z) renor-  FRG equation in this casel & d,) gives the exact large-scale

malizes as behavior, while ford<d, one must rely on the expansion.
The solution of Eq(10) with the initial conditionp(0)=1,
dA(z)  Kgq d*[1 which formally coincides with the equation for the fixed-

A%(z)—A(z)A(0)|. (7)

dar Y2A? E 2 point disorder correlator at=3 [1], can be written as
RG equationg5) and(7) are the basis for computation of the p(2)=1-Inp(2)=2°12. (12
force-velocity characteristics in the vicinity of the depinning
transition. In the following we analyze Eq&) and (7) at
d=4, i.e., fore=0. Before considering the general solution
of the RG equations, we will analyze the flow equation for
A"(O),

Note thatp(z) has a cusp at origin so that its behavior near
z=0 is given byp(z)=1—1z|+1z?+---. The constant
must be defined from the initial condition for the disorder
correlator. Indeed, flow equatio¥) for the disorder cor-
relator implies that in the case of RF disorder the RF strength
dA” c=[7ZA,dz is conserved to one-loop ord¢4] (it was
(0) 3K, ; . :

=——[A"(0)]~ (8) shown in Refs[7,8] that the above integral is not conserved

dl ¥? in the two-loop order FRG i.e., it does not depend dn
Therefore the constam@tin ansatz(11) is determined by the

From Eq.(8) it follows that as in the casgé<<d., the second strength ¢ of the bare disorder correlator as
derivative of the disorder correlator at origh{(0) diverges ~1.5EK;1)/20‘1, where we have used the integral
at the finite length ;= — y?/[ 3K,A(0)] for any initial con- [+ (z)dz~1.55. To higher orders of FRG, the nonuniver-
dition A{(0)<0. Thus one obtains the Larkin length,  sal constant is determined by higher moments of the bare
= A, 'e'c at the upper critical dimension. The divergence ofdisorder correlator. For the bare disorder correlator being a
the curvature ofA(z) implies the generation of a cusp sin- smooth function, the RG flow generates as in the adse
gularity: A(z) becomes nonanalytical at the origin and ac-<d. singularities on the scalg, which result in the cusp of
quires forl>I, a nonzero derivativeA’(07)<0. It was the running disorder correlator, and therefore in the existence
shown in Ref[4] that the cusp generated during the renor-of the threshold forcd=.>0. Because automodel solution
malization determines the threshold force of the depinning11) has the cusp on all scales, one should use it only beyond
transition. Therefore we expect that even at the upper criticahe Larkin scale. The full solution of flow equatidid), of
dimension the interface is pinned for a small enough drivingcourse, depends on the initial condition, nevertheless, the
force. latter is expected to approach soluti¢hl) in the limit |
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—oo, From Eq.(11) one can immediately derive the scaling
relations for the first derivatives of the running disorder cor-
relator,

A(0)=K;1y?(3a%)~ " (13)
A/ (0)=—K; y?(9al?) 15, (14)
1(0)=2K, y2(9h) . (15)

Using the above results, we will now calculate the dis-
placement correlation functidB(q) =(z4z_ ) that describes

the roughness of the interface at the upper critical dimension,

"

Simple scaling analysis shows that the correlation functio
satisfies the following flow equatidri7]:

B(a)=e"B(qe’;A,,F)). (16)
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Fl—F=—F=—-0.2A3(yc)'?, (22
where\ is the friction coefficient on the scalg. In order

to obtain the renormalized friction coefficient one should ex-
pressl in Eg. (21) through the correlation length, accord-
ing to L,=A,'e"v. In d<d. dimensions the relation be-
tween L, and v reads, L,~v Y@ 9 where z=2—(e
—{)I3 is the dynamic exponent relating the time and the
length scald4,5]. Let us now derive the relation betwekp

andv at the upper critical dimension. To do this we need first
the relation between the time scale and the space scale,
which is derived by using the relatior~\,L?/y with \,

iven by Eq.(21) ast~L?(InL)"?°. Following Ref.[4], the
correlation length.,, can be derived by equating the system-
atic drift of the interface and the height fluctuatidor
equivalently from the velocity-velocity correlation function

at equal timeg6]), which is the square root of E418), vt

In order to extract the behavior for long-wavelength correla-~ (In L)3. Combining the latter with the above relation be-

tions at the depinning transitios=F_, we putgqe'=A,
and expand Eg16) in powers ofA. After some algebra this
yields

A(0)  87? 1

')’Zq4 (3a2)1/3 q4[|n AO/q]l/3’

B(a)= 17

tweent andL gives the correlation length at the upper critical
dimension as

L,~v~YIn o[58

(23

v

The use of the relationl,:|v=v)\|v, which is obtained by
stopping the renormalization Bt, whereF, is given by Eq.

where in order to obtain the final expression on the right{22), A is given by Eq.(21) with I,=InL,Ao, and L,

hand side of Eq(17) we have used Eql3). In a direct
analogy with the casé<4, Eq.(17) holds simultaneously in

~v~ Y2 [the logarithmic correction th, in Eq. (23) results
in higher order terms in the force-velocity characterigtics

the equilibrium and at the depinning threshold at least withingives the implicit form of the force-velocity characteristics in

the one-loop approximatiofb,7]. The Fourier transform of

the vicinity of the depinning transition at the upper critical

Eq. (17) results in the following real-space displacement cor-dimension as

relation function for large distance

B(x)~(InxAq)??. (18

v

||nv|2/9'

(24)

c

To obtain the force-velocity characteristics we have to

integrate the flow equations in the vicinity Bf, i.e., in the
limit of small v. Substituting Eq(15) into flow equation(5)
for the friction coefficient and Ed14) into the flow equation
for driving force (6), we obtain

dinny 2 19
dF yA2
bl 0 1 —2/3,-2 (20)
dl (ga)1/3 '

Equations(19) and (20) describe the renormalization @f

Within the one-loop consideration the interface veloaity
under the logarithm of Eq24) can be replaced b —F..
Substitutingv from Eg. (24) into Eq. (23) we express the
correlation length as a function of the driving force las
~f-Y2In f|¥6, where the reduced driving forcé=F/F
—1 is introduced.

We have checked that result3)—(15), and(21) derived
here ford= 4 are consistent with the corresponding results of
Ref.[4] for d<4, so that Eqs(1) and(2) tend to Eqs(24)
and(18) for d—4, respectively.

In the recent numerical study of the depinning transition
of driven interfaces at the upper critical dimension in the
random-field Ising mode(RFIM) [20] the logarithmic cor-

andF, to one-loop order beyond the Larkin scale at the up-+ections to the force-velocity characteristics were chosen in

per critical dimension. In contrast to Eq4.9) and (20) be-
low the Larkin scale the friction coefficient increases un-
der renormalization in accordance with E®), while the
driving force is essentially not renormalizedK, /d1=0).
Integration of Eqgs.(19) and (20) over | starting froml,
yields the following scaling relations for the friction coeffi-
cient and the driving force:

N=No(I/10) %%, (21)

the form

[o(f)/F]1Y%~|Inf|. (25

The best fit to numerical data was obtained withk-0.40
+0.09. Taking into account that the numerical determination
of the logarithmic corrections is difficult, this value is in a
fair agreement with our exact resufi=2/9. The reason of
the discrepancy might be due to the fact that simulations are
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not carried out in the asymptotic regime,fki—1. Indeed, old force F;, which is a nonuniversal quantity, so that we
the simulations in Ref[20] were performed for|Inf|  Will not consider it. Using the same arguments that led us to
=1-45. Egs.(23) and(24), we arrive at

In the remaining part of this paper we will discuss the 113 _ 1209
contributions of the subdominant logarithms, which appear f~lexp( =21y, o(DH/~1A1+CL,). (29
in the two-loop order of RG. Using the results of Rgf] we  Equations(29) express the force-velocity characteristics to
find that the two-loop correction to disorder correlatbt) at  two-loop order of FRG by using the parametric representa-
d=4 has the form tion in terms of the correlation length=InL,Ay. The latter
allows us to avoid the asymptotic expansion, which leads to
An(2)=Kz*y2(9al?) 2% (z(31/a) "),  (26)  a complicated expressidig].
) . ) _ In order to describe the crossover to the asymptotic be-
wherep,(z) obeys the following differential equation: havior given by Eq(24), one needs in addition to EGR9)
_ _ 41402 " the corrections to scaling. The latter are not available, since
{[1=p@))p2(2) = p2(0) ]+ 1A p(2) = 11p"" () +p(2)}} so far only the asymptotic solution of flow equatidizs—(7)
+2p5(2)+4p,(2)=0 (27) s known. Due to these reasons the extension of the descrip-
tion of the critical behavior at the depinning transition to
with p(z) given by Eq.(12). Following Ref.[8], we impose largerv is a nontrivial problem.
the boundary conditiop,(0)=0 [p,(2) is the counterpart In conclusion, we have considered the effects of quenched
of the functiony,(u) of Ref. [8], so that this condition is random field disorder on the driven elastic interface at the
required for the consistency of the results for bdth4 and  upper critical dimension close to the depinning transition. We
d=4]. Expandingp,(z) in a Taylor series we obtaip,(z) have shown that the interface undergoes the depinning tran-
=—|z|+19/1&°+ - --. The leading correction to Eq17)  sition at the critical driving forcd=., and we have obtained
has the form—A[ (0%)2/(yq)*f1/k?(k+q)? 8], so thatthe the logarithmic corrections to the displacement correlation
logarithmic correction to roughnes$18) behaves as function, the correlation length, and the force-velocity char-
(InxAg) Y2 and, therefore, is irrelevant for large In order ~ acteristics. In approaching the depinning transition, our one-
to take into account the two-loop corrections to force-loop results become exact. We hope that the analytical results
velocity characteristics we need the two-loop correction toderived here will be of interest for numerical studies of the
friction, which readq8] depinning transition.
After this paper was finished, we learned that the more
K3/ y*A"(07)2+A"(0%)A’(0%)[3/2-In2]}. (28)  precise estimation ob from the simulations of RFIM21] is

in a very good agreement with our prediction 2/9.
Substituting Eq(26) into Eq. (5) and Eq.(11) into Eq. (28) inavery g g with our predicti

we obtain the two-loop contribution to E¢19) as C/I2, The support from the Deutsche Forschungsgemeinschaft
whereC= —[17/2+In 2]/54~ —0.17. The two-loop correc- (SFB 41§ is gratefully acknowledged. We would also like to
tion to driving force(6) results only in a shift of the thresh- thank P. Le Doussal for a useful discussion.
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